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Coherence-Based Underwater Target Detection From
Multiple Disparate Sonar Platforms
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Abstract—This paper explores the use of multichannel coher-
ence as a tool for detection of underwater targets from imagery
captured from multiple disparate sonar systems. The use of
multiple disparate sonars allows one to exploit a high-resolution
sonar with good target definition while taking advantage of the
clutter suppression abilities of a low-resolution broadband (BB)
sonar coregistered over the same region to provide much better
detection performance comparing to those of the single-sonar
cases. In this paper, the standard Neyman–Pearson detector is
extended to the dual disparate sonar case allowing target detection
across two sensory channels simultaneously. A novel distributed
detection system is also developed that exploits the use of multiple
dual-sonar detectors for multiplatform target detection. Test
results of the proposed detection methods are also presented on
an underwater synthetic aperture sonar (SAS) imagery database
containing data from three different imaging sonars operating at
three different frequencies and resolutions. Test results illustrating
the effectiveness of different coherent-based detection systems
will be presented and benchmarked against those of two other
detection methods in terms of probability of detection, false alarm
rate, and the receiver operating characteristic (ROC) curve.
Performance gains of about 23% in probability of detection were
achieved over the benchmarked methods.

Index Terms—Binary hypothesis testing, disparate sensor plat-
forms, two-channel coherence analysis, underwater target detec-
tion.

I. INTRODUCTION

D ETECTION of underwater objects in sonar imagery is a
complicated problem due to various factors such as vari-

ations in operating and environmental conditions, presence of
spatially varying clutter, and variations in target shapes, compo-
sitions, and orientation. Moreover, bottom features such as coral
reefs, sand formations, and vegetation may obscure a target or
confuse the detection process. Consequently, the development
of a robust detection system that is able to quantify changes
between the returns from the bottom and any target activity in
sonar images is highly desirable.
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The existing work in the area of target detection from sonar
imagery is primarily focused on using only one sonar system.
Dobeck [1], [2] utilized a nonlinear matched filter to detect
mine-size regions that match the target template in a sidescan
sonar image. For each detected region, several features were
extracted based on the size, shape, and strength of the target
return. A stepwise feature selection process was then used to
determine the subset of features that maximizes the probability
of detection and classification. A -nearest neighbor and an
optimal discrimination filter classifier were used to classify
each feature vector and the decisions of the two classifiers
were fused to generate the final decision. In [3] and [4], the
adaptive clutter filter detector in [5] is individually applied to
three different sonar images varying in frequency and band-
width. Final decision making is done using an optimal set of
features using the log-likelihood ratio test where the decisions
of the individual classifiers are fused. Chandran presented
[6] the use of a matched filter designed to capture the target
structure. Higher order spectra were then extracted from the
phase of the Fourier transform as features to classify objects.
A -nearest neighbor classifier, a minimum distance classifier,
and a threshold-based classifier were used. The outputs of the
three classifiers were fused to yield a final decision. However,
the use of a matched filter is not ideal as a detector, as targets
can vary greatly in shape, composition, and orientation in the
sonar images, hence leading to missed detections. Vera recently
presented [7] a method based on the Hilbert transform where
he used the transformed image to detect highlight and shadow
structures with target size priors. Geometrical features were
then extracted and subsequently classified using a classification
tree.

Recently, the canonical correlation analysis (CCA) method
[8]–[10] has been applied to underwater target detection and
classification from sonar backscattered data [11]. The CCA
method not only quantifies the amount of linear dependence or
coherence [8] between two data channels (e.g., two sonar pings
with certain ping separation) but also determines the coherence
pattern of the two data channels via the extracted canonical
correlations. These correlations and the corresponding canon-
ical coordinates allow one to quantify the changes between the
returns from the bottom and when target activities are present.
Additionally, the canonical correlations provide useful features
for target classification without the need to perform separate
detection and feature extraction. More specifically, coherence
patterns represented by these features are shown to be different
for pairs of pings that contain mine-like objects than those that
contain nonmine-like objects hence allowing good mine-like
versus nonmine-like discrimination. In [12], this coherence
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analysis method was extended to the frequency domain by mea-
suring coherence between the same frequency subbands in two
sonar pings. Comparing to the time-domain coherence-based
features [11], these frequency-domain features are shown
to provide substantially better detection and classification
results. Additionally, the frequency-domain coherence-based
feature extraction method offers a more rigorous way of gen-
erating acoustic-color for possible target identification from
multiple-sonar pings. The application of CCA method for
the underwater target detection from sonar imagery was first
explored in [13]. In this work, canonical correlations and coor-
dinates were extracted from consecutive columns of a region of
interest (ROI) within a sonar image and used to perform target
detection. From the detected ROIs the corresponding canonical
correlations may also be used for target classification.

The issue faced with all of the aforementioned detection and
classification systems is that they rely on observations made
from only one sensory system (in this case one sonar) and hence
the performance is limited to only one field of view (FOV). This
makes the detection of weak targets particularly challenging and
limits any possible improvement in the detection performance.
Detection using multiple disparate sensors, on the other hand,
offers a promising solution to overcome these shortcomings as
it allows for significantly better capture of the target charac-
teristics, because the targets are viewed from different aspect,
grazing angle, range, frequency, and perhaps sensing modalities.
This principle is true regardless of how the data are processed
at the fusion center. However, the network-centric sensor anal-
ysis mode (NSAM) requires careful considerations of the local
(sensor-level) computational requirements, communication net-
work bandwidth limitations, and more elaborate search plan-
ning when sensors (e.g., sonar or electro-optical) are on multiple
disparate autonomous underwater vehicles (AUVs). Moreover,
since preliminary decisions and feature extraction are often car-
ried out independently at each platform, the fusion center may
only have access to partial or incomplete information hence re-
sulting in loss of overall performance.

Collaboration among disparate decision makers reduces
this uncertainty in decision making in real-time NSAM situ-
ations while fully exploiting the limited communication and
processing resources. However, this comes at the price of
somewhat more complicated sensor management strategies. To
allow collaborative decision making among multiple sensor
platforms, it is essential to detect and further scrutinize the
information-bearing parts of the data collected by various
sensory systems. This involves detecting, isolating, and rep-
resenting (in terms of some pertinent attributes) the coherent
information among the multiple data sets. This is a challenging
problem due to disparate nature of this problem. Thus, new
algorithms are needed to: 1) collaboratively detect and agree
on threats occurring within the FOV of the sensors; 2) perform
feature extraction to capture common target attributes from
multiple sensor platforms; and 3) develop a single integrated
target assessment picture based upon the detected and localized
targets from multiple disparate platforms.

With these goals in mind, this paper develops a composite
two-channel Gauss–Gauss detector for underwater target de-
tection from dual sonar systems. In this framework, the CCA

channels contain composite vectors associated with either back-
ground alone ( or null hypothesis) or target plus background
( or true hypothesis). This is in contrast to the standard CCA-
based detector [10], which uses the assumption that one of the
CCA channels is always signal only and the other channel is
the observation. With these changes in the two hypotheses, new
expressions for the log likelihood and -divergence are derived
taking into account the composite nature of this two-channel
hypothesis testing. The goal here is to relate these measures to
their single-channel counterparts [10], [14] for ease in imple-
mentation. To extend this framework to multiple disparate
sonar platforms and hence greatly improve the detection per-
formance, by using more observations from the environment,
a distributed detection system is also developed. In this system,
the composite two-channel Gauss–Gauss detector for dual sonar
is employed as the local decision maker at each platform. This
distributed detection system is particularly useful in scenarios
where there could be multiple AUVs in a surveillance area each
equipped with two sonar (or any other sensory) systems. Each
decision maker on a platform transmits its decisions to a fusion
center where a final decision making takes place. Thus, this dis-
tributed multiple-sonar platform detection system requires min-
imum communication bandwidth since only decisions and some
local features are transmitted to the fusion center. Additionally,
the proposed system is simple to implement, versatile, and mod-
ular as it can easily incorporate any number of sensor platforms
with possibly different sensor properties in the detection and lo-
calization of the threats. We will demonstrate the usefulness of
both systems in improving the overall detection performance on
a sonar imagery data set provided by the Naval Surface War-
fare Center Panama City Division (NSWC PCD, Panama City,
FL). This data set consists of sonar imagery from a high-res-
olution high-frequency (HF) synthetic aperture sonar and two
broadband (BB) synthetic aperture sonars with images that are
coregistered over the same region. These images contain either
no targets, one target, or multiple targets.

This paper is organized as follows. Section II provides a
review of the standard Gauss–Gauss detection and its rela-
tion to CCA. Section III develops the composite two-channel
Gauss–Gauss detector for dual sensor problems in the CCA
framework. The distributed detection system together with
the corresponding fusion rule is also presented in Section III.
In Section IV, the effectiveness of the proposed systems is
demonstrated on the acquired multiple-sonar data set. Finally,
conclusions and observations are made in Section V.

II. REVIEW OF GAUSS–GAUSS DETECTION

In this section, a brief review of the standard Gauss–Gauss de-
tection method [14] is presented first by defining the hypotheses
and formulating the log-likelihood ratio decision rule and -di-
vergence detectability measure. These formulations are then ex-
pressed [10] in terms of the canonical coordinates and correla-
tions using the CCA framework.

Assume we have an observation , which is repre-
sented by a normal random vector with zero mean and covari-
ance matrix . A classical detection problem is to test between
hypothesis , i.e., noise alone and hypothesis

, i.e., signal plus noise, where
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is the covariance matrix of the signal and is the covariance
matrix of the noise alone. It is assumed that the noise and signal
are uncorrelated. For this Gauss–Gauss detector, the log-likeli-
hood ratio test, which minimizes the risk involved in deciding
between and , can be given [14] as

where with is the likelihood
ratio function and is the detection threshold. The matrix can
be written as [14]

(1)

where , which is known as the signal-to-noise ratio (SNR) ma-
trix, is defined as

(2)

Now, we can rewrite the log likelihood as

(3)

where is clearly a normal random vector with zero
mean and covariance matrix under , and under

i.e., and , where is the
expectation operation under , and is the expectation
operation under .

The -divergence [14] between the two hypotheses, which
can be used as a measure of detectability, is

(4)

where denotes the trace operation on a matrix. The SNR
matrix can be decomposed as

(5)

where is a diagonal matrix with diagonal elements that are
the eigenvalues of , and is the eigenvector matrix containing
the corresponding eigenvectors in its column space. This implies
that solves the following generalized eigenvalue
problem [14]:

(6)

Using (5) and the cyclic property of the trace, the -divergence
in (4) can be rewritten as

(7)

Using the eigenvalue decomposition of , the log-likelihood
ratio may also be rewritten as

(8)

Thus, we only need to solve the eigenvalue problem in (6) to
obtain the eigenvectors and eigenvalues for computing
the log-likelihood ratio in (8) and the -divergence in (7).

A. Gauss–Gauss Detection in CCA Framework

CCA offers a suitable framework for Gauss–Gauss detection
in which the log-likelihood ratio and -divergence measure de-
fined in Section II are expressed in terms of the canonical co-
ordinates and canonical correlations [10]. This allows one to
determine the contribution of each canonical correlation to the
log-likelihood and the -divergence detectability measure. For
a review of CCA, the reader is referred to the Appendix.

In the two-channel CCA-based detection framework, channel
corresponds to signal alone data; i.e., with co-

variance matrix whereas channel could
be either noise under (i.e., ) with covariance matrix

or signal plus noise under (i.e., ) with
covariance matrix . Thus, under hypoth-
esis , the composite vector has a covariance
matrix

(9)

Additionally, under hypothesis , matrix can be rewritten
as

(10)

Now, it can easily be shown [10] that the log likelihood in (3)
may be rewritten as

(11)

where is the canonical correlation
matrix with diagonal elements that are the canonical corre-
lations obtained from the singular value decomposition
(SVD) of the coherence matrix ,
and is the canonical coordinate vector
(under ) with canonical coordinates , for the channel,
i.e., .

It can also be shown [10] that the -divergence between
and may be expressed in terms of the matrix or canonical
correlations as

(12)

where the function is nonincreasing in the interval
.

The -divergence between the two hypotheses considering
-dominant canonical correlations is then

(13)
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Fig. 1. Coherence-based detector for composite channel hypothesis case.

Consequently, the rank- detector that maximizes the diver-
gence is the detector that uses the canonical coordinates corre-
sponding to the -dominant canonical correlations, i.e.,

or those that are sufficiently close
to one. That is, for building low-rank detectors, only the domi-
nant canonical coordinates need to be retained.

III. COMPOSITE TWO-CHANNEL GAUSS–GAUSS DETECTION

As mentioned before, to develop a coherent-based detector
for detection from two disparate sonar platforms, the composite
channel contains either background noise vectors or target
(signal) plus background noise vectors. In this section, we
will develop the hypotheses and then derive the log-likelihood
ratio and -divergence expressions for the composite hypoth-
esis testing problem. Fig. 1 illustrates this hypothesis testing
problem where the composite channel for the two hypotheses is

(14)

Under certain conditions, it is possible to relate the formu-
lations of the log likelihood and -divergence for this com-
posite two-channel detection problem to the corresponding ones
in the standard single-vector case presented in Section II. This
will result in reduction in the dimensionality of the channels
and hence considerable computational savings. Additionally, it
would provide much better insight into the relationship between
coherence measures in the composite two-channel and single-
channel cases. The conditions and assumptions that must be
satisfied include: 1) mutually uncorrelated , , and , i.e.,

and , for , ;
2) signal (target) contributions in both sonar platforms are the
same with ; and 3) both channels contain uncorre-
lated noise (background) with the same covariance matrix ,
i.e., , for . Clearly, these assump-
tions may not be true in real dual disparate sonar situations, in
which case one can always use the method in [14] where the
data vector is the concatenated version of the two sensory chan-
nels. In Section IV-B, we will compare the results of the method
developed in this section to those of the general one in [14].

For this composite hypothesis testing, the Gauss–Gauss de-
tection test becomes

(15)

where is the composite observation vector and
with . The covariance matrices and ,
under hypotheses and , are given by

(16)

(17)

respectively. Note that and are the covariance matrices
defined in Section II for the single-channel detector.

The expectation of the likelihood
leads to the composite -divergence [15]

(18)

Using (17), we can relate the composite -divergence
in (18) to and or to the SNR matrix in the stan-
dard Gauss–Gauss detector in Section II. Let us first express

in (18) as

(19)

where was defined in (2) with eigenvalue decomposition (5).
Next, we express by rewriting as

(20)

Now, using the matrix inversion lemma [16, p. 50] and after
simplification, we get

(21)

Applying the matrix inversion lemma again to the common term
gives

Thus, the diagonal blocks in (21) can be rewritten as

leading to

(22)
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Now, using (19) and (22), the composite -divergence in (18)
becomes

(23)

Using the eigenvalue decomposition of in (5), we get

(24)

Since the eigenvalues of , , are related to the squared
canonical correlations of the single-channel problem by

[10], we can rewrite the composite -diver-
gence in (24) in terms of these canonical correlations as

(25)

To express the log likelihood in terms of and , we
use the result in (20) for in . This gives

(26)

If we choose

then

(27)

where . The log likelihood is now rewritten
in terms of and from the standard single-channel detector
in Section II.

Now expressing in terms of the squared
coherence matrix of the
single-channel problem and using
yields

(28)

where is the composite canonical coordinate vector

under hypothesis when both channels consist of signal plus
noise. This expression relates the composite two-channel log
likelihood to the single-channel (see Section II-A) canonical
correlations and canonical coordinate vectors and as-
sociated with and , respectively, i.e., with two
different noise realizations, under .

Fig. 2. Block diagram of the distributed detection system for multiple-sonar
platforms. (a) Overall layout. (b) Fusion center.

A. Extension to Multiple Disparate Sonar Platform
and Distributed Detection

To extend the composite CCA-based detector to multiple dis-
parate sonar platforms where each platform contains two sonar
systems (e.g., one HF sonar and one BB sonar), we propose the
distributed detection system as shown in Fig. 2 where a local
decision is made between and at each decision maker.
This system is inspired from the work in [17, Ch. 3.3] and [18].
In the proposed system, each local decision maker, denoted by

where is the number of platforms, makes its
independent observation from the environment. The motiva-
tion behind this approach is that by using multiple distributed
composite CCA-based detectors (one on each AUV platform)
one can greatly reduce the false alarm rate and increase the
overall detection rate by using more observations from the en-
vironment. Moreover, by performing the image-based detection
at each of the local decision makers and only transmitting their
local decisions, one can greatly reduce the amount of data that
needs to be transmitted from the disparate platforms to the fu-
sion center, which could be on another more equipped AUV or
on the mother ship.

We will assume that the prior probabilities of the two hy-
potheses and are and , respectively. Each local
decision maker then receives a composite observation vector

, . These observations are assumed to be condi-
tionally independent with respect to each decision maker and
have known conditional densities , , .
The local decision makers then send their local decisions to
the fusion center where, based upon the received local decisions
and an additional observation vector from the environment,
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the fusion center makes a final aggregated decision . The ob-
servation vector can be any observation made either by the
sensor on the platform with the fusion center, if it happens to be
in the same surveillance area, or in practice could be any other
measurements (e.g., some statistical measures) taken from the
same environment (e.g., by one of the AUV designated as the
team head). Clearly, in the former case, one does not need to
transmit these additional data, while in the latter case, these aux-
iliary measurements need to be transmitted to the fusion center.
However, since the number of such measurements is very small,
the impact on the communication load is minimal.

Let us denote the decision rule of the fusion center as ,
where and denote as the
decision rule of the th local decision maker, i.e., .
Furthermore, let us assume that the overall cost is a function
of only the final decision and the true hypothesis. In other
words, let be the cost of decision by the fusion center
when hypothesis is true. We will make the assumption that
the cost of making erroneous decisions is greater than the cost
of a correct decision and . Therefore,
we need to find the decision rule such that the expected cost

is minimized where the expectation is over the
team of local decision makers.

If we assume that the decision rules of the local decision
makers are given, then the optimal strategy for the fusion rule
is a likelihood ratio test using the centralized Neyman–Pearson
lemma [19, Ch. 3.2]. Here we assume that the decisions
and are conditionally independent, and therefore the likeli-
hood ratio test is given by [17, Ch 3.3]

(29)

where is the fusion decision threshold and is defined as

(30)

For the local decision makers, since we assumed that the ob-
servations are conditionally independent and further the fusion
rule is known, the optimal decision rule for the th
local decision maker becomes a likelihood ratio test given by
[20, Ch. 2.2], [17, Ch. 3.3]

(31)

where is the local decision threshold at the th decision maker.
Note that since the coherence-based detector used at each deci-
sion maker is a likelihood ratio test, the above fusion rule will
be optimal.

To find the conditional densities and for
the fusion rule, one may use a density estimator such as the
probabilistic neural network (PNN) or backpropagation neural
network (BPNN) [21, Ch. 4], [22]. To make the fusion rule more
suitable for the neural-network-based density estimators, one
may use Bayes’ rule to rewrite the fusion rule in terms of the a

posteriori conditional densities and that are
generated at the outputs of the PNN or the BPNN. This gives

(32)

The PNN, which implements the Parzen nonparametric prob-
ability density function estimation and Bayes decision rule, can
be used to estimate the conditional densities . The PNN
consists of three feedforward layers: the input layer, the pattern
layer, and the summation layer [22]. Data vectors are applied to
the input layer, which passes them to each neuron in the pattern
layer. The pattern layer consists of pools of pattern neurons,
where is the number of hypotheses (in this case ).
In each pool , there are pattern neurons, each of
which represents exactly one pattern from the training set for
hypothesis , . For the input observation vector
with dimension , the output of each pattern layer neuron is

(33)
where is the weight vector of the th neuron in the th pool,
and the nonlinear function represents the activation func-
tions of the neurons. In the summation layer, the th neuron as-
sociated with hypothesis , , forms the weighted sum
of all the outputs from the neurons in the th pool in the pat-
tern layer. The weights in the summation layer are determined
by the decision cost function and the prior hypotheses probabil-
ities. For the “0–1” cost function and equally likely hypotheses,
the weights will be one for all the neurons in the summation
layer. For the input pattern of an unknown hypothesis, a final
decision is made through a simple comparison of the PNN out-
puts , i.e.,

if (34)

or otherwise.
Under certain conditions [21], [22], the outputs of the PNN

correspond to the a posteriori conditional probabilities, i.e.,
, when , i.e., the weight vector

of the th neuron in pool 1 is set to the training sample
belonging to hypothesis . Although this training process
is very fast, a very large network may potentially be formed,
especially if the number of samples in the training set is large.

To generate the likelihood ratio
needed in (32) from the two PNN outputs for the binary
hypothesis problem, we simply use

, where “ ” means normalized such that
. This accounts for numerical inaccuracies

in estimating the conditional densities as PNN can produce
, which is not acceptable. Thus, the case

implies that the PNN strongly believes ,
while means that the PNN strongly believes

. In the case when , i.e., tie case, is
chosen to avoid missing weaker targets.

The conditional densities , , , that
represent the confidence in local decision maker’s decisions
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can be generated using a BPNN [21]. Once the BPNN-based
probability estimator has received , it estimates ’s
such that

(35)

where is the th output of the BPNN
for the decision . The BPNN is trained to capture this mapping
between the local decisions in the training data set and the hy-
pothesis . It is well known [21, Ch. 4] that, if properly trained,
the BPNN performance approximates an optimal Bayesian es-
timator. Using the trained PNN and BPNN, the final decision
rule in (32) can then be implemented and used to make a final
decision based on all the local decision makers’ local decisions
and the observation vector from the environment.

IV. TEST RESULTS ON MULTIPLE-SONAR IMAGERY

In this section, we discuss the results of applying the proposed
coherence-based detection methods to a multiple-sonar data set
provided by the NSWC PCD. The characteristics of this data set
are described next.

A. Data Description

The multiple-sonar data set consists of a high-resolution HF
synthetic aperture sonar image as well as two BB sonar images
coregistered over the same region of the seafloor with the images
captured from multiple target fields. The two BB sonar images
are actually formed from one BB sonar by bandpass filtering
the returns to capture two different nonoverlapping parts of the
frequency band. The coregistration is easily accomplished as the
two sonar systems are mounted on the same AUV and use the
same receive hydrophone array. The pinging for the HF and BB
sonar systems is done simultaneously as they are sufficiently
far apart in frequency such that the returns are easily separable.
More information on high-resolution HF and BB sonar can be
found in [23], [24] and in [25], [26], respectively.

The sonar images in this data set are complex-valued and
are generated by a -space or wave number beamformer [27],
[28, Ch. 6.2], which computes the 2-D Fourier transform of
the raw or range-compressed sonar data in the delay-time/aper-
ture domain. This converts the data into the spatial frequency/
wave number -domain where it is multiplied by the power
spectrum of the transmitted waveform. A change of variables
is done by Stolt interpolation [29]. This change of variables
maps the frequency/wave number -domain into the wave
number domain . The inverse 2-D Fourier transform is
then taken of the mapped data to form the complex image. For
more information on the -space/wave number beamformer the
reader is referred to [28, Ch. 6].

As mentioned before, the sonar images captured by different
sensor systems are coregistered so that the pixels correspond
to the same section on the seafloor. This is important, because
each sonar is operating at a different frequency and beamwidth
and has different spatial resolution hence providing a different
size image. Thus, for this data set, disparateness is in frequency,
resolution, and beamwidth of these sonar systems but not in the
location. Examples of HF and BB sonar images in the data set
are presented in Fig. 3(a) and (b), respectively.

Fig. 3. Example of (a) HF (2400 � 2061 pixels) and (b) BB (800 � 4122
pixels) sonar images.

This data set contains 59 images from each of the three sonar
systems. There are 53 different targets with some sonar im-
ages containing more than one target. It must be pointed out
that the areas covered by these sonar images do not overlap on
the seafloor and further there are not multiple looks at the tar-
gets. Moreover, the images in the data set are captured from
multiple target fields. The HF sonar images are 2400 2061
pixels, while the BB images are 800 4122 pixels. The average
target size encountered in this data set is found to be 65 100
pixels and 20 208 pixels for the HF and BB sonar images,
respectively. The backgrounds in these images correspond to
extremely rough bottom with large amounts of rock and coral
structures, sand ripples, and sea grass (see Fig. 3). Thus, the
motivation behind using this multiple-sonar data set is to re-
duce the false alarm rate caused by the challenging bottom con-
ditions. This improvement in the detection performance is ex-
pected, because the HF sonar provides higher spatial resolution
and better ability to capture target details and characteristics.
In the HF sonar image, the highlight, dead zone, and shadow
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Fig. 4. Example of HF and BB target snippets. (a) HF (72� 112 pixels). (b)
BB (24� 224 pixels).

structures typically have good definitions with each having a
definite shape and adequate number of pixels. Fig. 4(a) demon-
strates this structure for HF sonar image target example of size
72 112 pixels, where the highlight corresponds to the bright
pixels, the shadow is the dark pixels, and the dead zone is the
small band of light pixels in-between. Nonetheless, these struc-
tures will be prominent for structured clutter as well (e.g., coral
reefs and sand ripple). In a BB sonar image, however, the target
structure is not as well defined. More specifically, a target will
primarily show up as a highlight with no prominent dead zone
or shadow structure. Fig. 4(b), which is one of the BB sonar im-
ages of the same target (24 224 pixels) in Fig. 4(a), illustrates
this lack of dead zone and shadow structure. Nonetheless, the
signature of the clutter is also suppressed hence leading to sub-
stantially lower number of detected contacts in BB sonar im-
ages. However, some structured clutter will show up as bright
spots, though they tend to be at a smaller magnitude and size

than those of the targets. Therefore, the use of multiple disparate
sonar systems allows one to exploit a high-resolution HF sonar
with good target definition while taking advantage of the clutter
suppression ability of a low-resolution BB sonar coregistered
over the same region to provide potentially much better detec-
tion performance comparing to those of the single-sonar cases.

We will first present the results of the dual disparate sonar
detector in Section III that uses one HF sonar image and one
BB sonar image. We will then present the results of distributed
detector for multiple (3) sonar images and compare the results
with those of the single dual-sonar detector.

B. Dual-Sonar Detection Results

The block diagram of the dual-sensor detector, which uses
an HF and a BB sonar images, is shown in Fig. 5. Although
the HF and BB sonar images observe the same area at different
resolution, beamwidth, and frequency characteristics, the target
returns in these two images are more coherent than those of
the background (detection hypothesis). The CCA-based detector
exploits this high coherence between the two sonar images when
targets are present. A side benefit of the CCA-based detector is
that the canonical correlation features that capture the coherence
remain somewhat unchanged [8] to linear perspective transfor-
mation on the images, which could be caused by variations in
grazing angle and elevation of the platform. Additionally, in
[10]–[12] and [18], these canonical correlation features were
used to classify the underwater objects into mine-like versus
nonmine-like classes.

For the dual-sonar detector, the pair of HF and BB sonar
images is partitioned into ROIs with a 50% overlap along both
range and cross-range directions. The ROI sizes for the HF
and BB sonar imagery were experimentally determined to be
72 112 pixels and 24 224, respectively, based upon the
average sizes of targets encountered in these images and is a
logical design choice. Each ROI is then channelized (for the
two-channel CCA) by a rectangular blocking scheme with the
dimension of the blocks for the HF and BB sonar images being
6 4 and 2 8 pixels, respectively. The block sizes are chosen
according to the size of the ROIs or the resolution of the sonar
images. The blocks are taken in a raster-scan fashion from
a ROI, where each block is vectorized into a column vector

or depending on the channel (see Fig. 5). These blocks
form realizations of the two channel data in the CCA process.
The canonical coordinates and correlations are then computed
for each pair of ROIs using these samples and subsequently
used in (25) and (28) to compute log-likelihood ratio and the

-divergence, respectively.
To show the separability (hence prove our detection hypoth-

esis) of the dominant canonical correlations for ROIs that con-
tain targets over background and those that contain only back-
ground, a test was conducted on a set of 72 target ROIs and
72 background ROIs, which were selected at random. Note that
owing to the 50% overlapping in the range and cross-range di-
rections there are 212 possible ROIs that contain targets. Thus,
this subset contained about 1/3 of the possible target ROIs. The
selected background ROIs consisted of a mix of structured and
nonstructured clutter. This subset is a very small portion of all
possible background ROIs in this data set. Fig. 6 shows the mean
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Fig. 5. Coherent-based detection and feature extraction block diagram for disparate sonar platforms.

Fig. 6. Plot of statistical distribution of canonical correlations for target and
background for dual-sonar HF–BB.

and standard deviations computed for all 16 canonical correla-
tions using ROIs containing targets and those
containing background only. Mean values are shown by “x” for
target and “o” for no target and the length of each bar represents
the corresponding standard deviation. As can be seen, there is
good separation between targets and background, especially for
dominant canonical correlations, which are the first five correla-
tions, as the means are highly separated. This can be attributed
to the greater coherence between and channels (or between
HF and BB sonar images) across the target ROIs versus those
over background clutter where there is more randomness. This
is shown in Fig. 6 by how close the dominant target canonical
correlations are to 1; the closer is to 1, the more coherent
is to (see the Appendix and [8]).

Fig. 7 shows the histogram of the log-likelihood ratio values
for a single target ROI and a single background ROI in the

dual HF–BB detector. Using the training set described above,
which consists of the 72 target and the 72 background ROIs, a
detection threshold (shown by the dashed vertical line in Fig. 7)
was determined to be . This threshold is found by
forming the receiver operating characteristic curve (ROC) for
this training set and then finding the threshold corresponding to

Fig. 7. Histogram of example log-likelihood values for target and background
for HF–BB.

the knee point, where , on the ROC which typically
corresponds to the detector operating point [30]. This detection
threshold is then used for the detection process on all the ROIs
in all the sonar images in the data set. That is, for each pair of
blocks within a ROI pair, if the log-likelihood ratio falls above
this prespecified detection threshold the block is flagged as a
target block for that ROI pair. Note that the same threshold can
be used on other similar data sets as long as the sonar properties
do not change. A detection score is then created for the ROI pair
based on the percent of their constituent block log-likelihood
measures that fall above the detection threshold. A detection
score 50% signifies (i.e., more than 50% of the constituent
blocks in the ROI pair are declared as target) presence of a target
within that pair of ROIs.

The dual HF–BB detector was then applied to the entire data
set. This system detected 51 of the 53 targets with an average
of 10.13 false detections per image, which is acceptable due to
the difficult bottom conditions in this data set. The ROC curve
for the dual-sonar HF–BB detector is presented in Fig. 8 by
the solid curve. The ROC was generated by sweeping the de-
tection threshold in (15) for the block-wise log-likelihood
measure. Note that the ROI-based detection score of 50% is
not changed as it is independent of detection threshold . At
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Fig. 8. ROC curve for the HF–BB detector and comparisons.

the knee point of the ROC curve, we have 95% and
5%. It was observed for those targets that were missed

that the coherence was low, because the target only appeared
in one of the images. The performance of our coherence-based
detector was compared to the standard Gauss–Gauss detection
method presented in Section II-A, where we concatenated the
HF channel with the BB channel to formulate the de-
tection problem as a one-channel problem and implemented the
detector in the same manner as described previously with the
detection threshold chosen experimentally to be . This
standard Gauss–Gauss detector detected only 42 of the 53 tar-
gets with an average of 56 false alarms per image, which is not
acceptable. The ROC curve for this detector is also presented in
Fig. 8 by the dashed curve where at the knee point of the ROC
curve we have 70% and 30%. It is interesting to
note that though in Section III we made several simplifying as-
sumptions to develop our composite Gauss–Gauss detector, the
performance of our detector is by far better than the standard
counterpart. This can be attributed to the ability to utilize the
coherence between the two sonar images.

Additionally, we have also compared our detection results to
those generated using the detector recently proposed by Vera
[7]. This detector uses Hilbert transform and target size priors
to perform detection on a single-sonar image. To compare the
results of the detector with ours we ran Vera’s detector on the
entire data set by taking the Hilbert transform of the image,
thresholding the resulting image, and then rejecting any object
that was three times greater in size than our average target size.
We then computed the number of objects detected per image.
Using the same training data, the detection threshold for this
detector was chosen to be 0.1131. This detector detected 49 of
the 53 targets with an average of 50 false alarms per image. The
ROC curve produced by this method on the entire data set is
shown by the dashed–dotted curve in Fig. 8. At the knee point
of this ROC, we have 72% and 28%, which is sub-
stantially inferior to those generated using the proposed com-
posite Gauss–Gauss detector in Section III. Overall, our coher-
ence-based detector performed extremely well given the small

Fig. 9. Block diagram of the multiple-sonar platform distributed detection
system.

number of samples used to form the detection threshold. More-
over, the number of false alarms per image generated by our
detector is very reasonable and much smaller than those of the
benchmarks. This would greatly reduce the load on the subse-
quent classification step, which classifies the detected ROIs into
mine-like versus nonmine-like objects.

To improve the overall detection performance and increase
the practical feasibility of the coherence analysis framework in
realistic multiple disparate sonar systems the use of multiple
decision makers is a necessity. The motivation behind the pro-
posed distributed detection setup is that by using multiple AUVs
each equipped with two sensor systems and a local detector one
can perform high confidence target detection. In Section V, we
demonstrate effectiveness of the proposed distributed detection
framework in Section III-A on this multiple-sonar data set.

C. Multiple-Sonar Platform Distributed Detection Results

The block diagram of the multiple-sonar detection system
that uses three sonar images is presented in Fig. 9, in which the
three sensor systems are on the same platform as described in
Section IV-A. As can be seen, the first dual-sonar detector uses
the HF image and one of the BB sonar images with a different
spatial resolution, while the second dual-sonar detector uses that
same BB and the second BB sonar image with the same resolu-
tion but different frequency characteristics. The nonoverlapping
frequency bands of BB and BB span the frequency band of
the BB sensor as described before. These dual-sonar detectors
become the two local decision makers in the distributed detec-
tion system in Fig. 2. We refer to these local decision makers by
HF–BB and BB –BB , respectively. The reason for using two
BB sonar images in the second detector is that the coherence in-
formation can be exploited to suppress clutter ROIs and detect
potential targets, while the coherence information in the first de-
tector solidifies the decision in the second one by verifying the
joint presence of the target in both the HF and BB images.

The detection process at each dual-sonar detector (or decision
maker) is the same as that described in Section IV-B. That is, the
log-likelihood ratio is computed for the corresponding blocks
within the ROI pair for HF–BB and BB –BB detectors using
the extracted canonical coordinates and correlations for each
pair. The outputs of each dual-sonar detector is then fused to
generate a final decision using the fusion rule in (32), hence
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Fig. 10. Plot of statistical distribution of canonical correlations for target and
background for both detectors. (a) HF–BB detector. (b) BB –BB detector.

leading to reduced number of false alarms and missed detections
comparing to those of the individual detectors.

To show the separability of the principal canonical corre-
lations that contribute the most to the separability of the two
hypotheses, a test was conducted on the training set ROIs de-
scribed in the dual-sonar case with the corresponding ROIs of
the third sonar included. Again, the mean and standard devia-
tions of each of the 16 canonical correlations are
computed and presented in Fig. 10(a) and (b) for the HF–BB
and BB –BB detectors, respectively. As can be seen, for both
pairs of sonar images, there is reasonable separation among
the canonical correlations formed from target over background
ROIs and those from background only ROIs. This is especially
evident for the first five dominant canonical correlations.

The detection threshold for each dual-sonar platform detector
was determined experimentally based upon the training data set

Fig. 11. Histogram of example log-likelihood values for target and background
for both detectors. (a) HF–BB detector. (b) BB–BB detector.

using a similar procedure described before. Using this expanded
training set (with respect to the second BB sonar), the appro-
priate thresholds for the local dual-sonar detectors were deter-
mined to be for the HF–BB and for the
BB –BB , respectively. Fig. 11(a) and (b) shows the histograms
of the log-likelihood ratio values for a single target ROI and a
single background ROI in the HF–BB and BB –BB cases,
respectively. The detection thresholds are shown by dashed ver-
tical lines in Fig. 11(a) and (b). The process of choosing the
appropriate detection threshold is as described in Section IV-B.
These detection thresholds were then used to perform detection
on all the ROIs within the data set. That is, any pair of blocks
within a ROI pair whose log-likelihood ratio falls above the
corresponding threshold is flagged as a target block in either
HF–BB or BB –BB detectors.

The local decisions of the two detectors are then sent as
the local decisions to the fusion center as shown in Fig. 9. The
fusion rule also uses the observation of the fusion system
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from the three ROIs and the two local decisions from the local
decision makers to yield the final decision .

To generate the final decision , we need to estimate the
conditional densities needed for the fusion rule in (29) and (32).
As described in Section III-A, two different neural networks,
namely a PNN and a BPNN, are used to accomplish this task.
The training, validation, and testing subsets for these networks
were randomly selected from the possible 212 target ROIs and
212 randomly select background ROIs (out of possibly thou-
sands) described in Section IV-B. These subsets contain 1/3,
1/6, and 1/2 out of total of 212 ROI pairs, respectively, hence re-
sulting in a training set (for the networks) consisting of 72 triple
target and 72 triple background ROIs. Equal numbers of target
and background samples are used to avoid biasing the density
estimators. The validation and testing subsets were formed sim-
ilarly yielding 40 triple target and 40 triple background ROIs
for the validation set and 100 triple target and 100 triple back-
ground ROIs for the testing set. The decisions from the two
CCA-based local decision makers are then computed for the
training set and used to train a two-layer BPNN with two in-
puts, four hidden layer neurons, and two output neurons. For
training of the BPNN, five random weight initializations were
tried and the network that performed the best on the validation
set was selected for testing.

For the PNN that generates the likelihood ratio for the fusion
center observation vector , again three subsets of the data were
used for training, validation, and testing. The input to the PNN is
a 9-D observation vector from the environment. This is a set
of statistical attributes, namely mean, variance, and skew taken
from the three ROIs over target and background. The same set
of target and background samples as with the BPNN is used for
training, validation, and testing of the PNN as well. Since the
weights in the pattern layer are fixed for the PNN, ten different
initializations of the variance of the Gaussian kernel were used
for the training of the PNN. The network that performed the
best on the validation set was then selected for testing. The re-
sulting trained PNN is relatively small due to the binary hypoth-
esis problem as the PNN consists of only two pools of neurons
in the pattern layer each containing 72 neurons.

To determine the threshold for the fusion rule in (29), a
“1-0” cost function is used, i.e., and

. Additionally, the prior probabilities are considered to
be equal, i.e., . Therefore, the threshold for the
fusion rule in (29) and (32) is .

The system is then tested on the entire multiple-sonar imagery
data described before. The individual coherence-based local de-
cision makers performed marginally well. More specifically, the
HF–BB detector detected 51 of the 53 targets with an average
of 10.13 false detections per image, while the BB –BB de-
tector performed a little worse with detection of 49 of the 53
targets and an average of 9.86 false detections per image. How-
ever, when the decisions of these two detectors are fused using
the developed distributed detection system in Section III-A, the
performance was greatly improved. After the fusion process, the
system successfully detected all the 53 targets with an average
of only 7.1 false detections per image. The ROC curves for the
individual detectors and the fusion of the two are presented in
Fig. 12. To generate the ROC, the thresholds , , and in

Fig. 12. ROC curves for the individual detectors and the fusion.

(30) and (31) were swept for the fusion center, HF–BB de-
tector, and the BB –BB detector, respectively. As before, the
decision score was chosen to be 50% and was fixed. At the knee
point of the ROC for the HF–BB detector, we have 95%
and 5%, while for the BB –BB detector, the knee point
exhibits 92% and 8%. After the fusion of the two
detectors at the fusion center, the knee point of the fused ROC
gives 99% and 1%, which demonstrates excellent
overall detection performance of the proposed distributed detec-
tion system.

Closer investigation revealed that the targets that were missed
by the local decision makers were at very close range and had
faint signatures in all the three images. This is because these tar-
gets were close to the track of the AUV. Consequently, the sig-
nature was dark and hard to visually discern in all three sonar
images hence leading to overall low coherence and subsequent
missed detection. Nonetheless, after the fusion even the faint
target signatures were detected and this can be attributed to
the fusion center using its own observation of the environment.
Overall, the distributed detection system performed extremely
well given the small number of target and background samples
used to form the detection thresholds. Moreover, this system
showed vast improvement over the dual disparate detector in
Section IV-B.

V. CONCLUSION AND OBSERVATIONS

In this paper, a new composite two-channel coherence-based
detector was developed for dual disparate sensor systems. Due
to the nature of the problem, the resulting detection hypotheses
contained two data channels that both capture target or back-
ground. This is in contrast to the standard detection problems
where both hypotheses contain one channel only. Thus, new
formulations for the log-likelihood ratio and -divergence were
derived to account for these major differences. A distributed de-
tection system was also developed where several dual-sensor de-
tectors are used to generate local decisions. The fusion center
receives local decisions together with its own observation to
generate a final decision. The incorporation of the observation
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vector in the fusion rule helps to greatly increase the probability
of detection and decrease the false alarm rate. By using mul-
tiple dual-sensor detectors, one is able to take advantage of more
than two observations from the environment hence providing a
higher confidence detection decision at the fusion center. For
the single dual-sensor detector, we achieved a 95% for a

5% with an average ten false detections per image. More-
over, when we benchmarked our method against the standard
Gauss–Gauss and Vera’s Hilbert detector, our method achieved
a much larger for an extremely lower number of false alarms
per image.

When the developed distributed detection system was tested
on the multiple-sonar data set provided by the NSWC PCD it
was shown that this system significantly improved the proba-
bility of correct detection while reducing the incidence of false
alarms when compared with the results of the single dual-sonar
detectors. All targets were detected with an average of only
seven false detections per image on the entire data set. For a
common of 5%, comparison with the results of the indi-
vidual dual-sonar detectors indicated a 13% and an 18% im-
provement in the over the individual HF–BB and BB –BB
detectors, respectively, which is a substantial reduction in the
number of false alarms over either of the individual detectors.
Clearly, this indicates that the use of multiple-sonar types im-
proves the detection performance by better capturing the target
characteristics. Moreover, the distributed detection system for
a network of sensor platforms can offer effective multiplatform
detection by reducing the amount of information that needs to be
transmitted to a remote fusion center while offering high proba-
bility of detection and low false alarm rate. The systems devel-
oped in this paper can be applied to any realistic distributed net-
work-centric environment involving multiple small sensor plat-
forms (e.g., AUVs and autonomous aerial vehicles) where band-
width and processing time constraints must be considered.

APPENDIX

REVIEW OF CCA METHOD

CCA was proposed by Hotelling [9] for the analysis of linear
dependence between two data channels. CCA decomposes the
linear dependence between the two channels into the linear de-
pendence between the canonical coordinates of the channels,
where this linear dependence is easily determined by the corre-
sponding canonical correlations [8].

Consider the composite data vector consisting of two
random vectors and , i.e.,

(36)

For the remainder of the derivations, it is assumed that ,
and also the notation represents the Hermitian operation.
Assume that and have zero means and share the composite
covariance matrix

(37)

If and are now replaced by their corresponding whitened
vectors, then the composite vector is

(38)

where is a square root of with
and . The covariance matrix of may be
written as

(39)

where

(40)

is called the coherence matrix of and [8]. Therefore, the
coherence matrix is the cross-covariance matrix between the
whitened versions of and . Now, the SVD of the coherence
matrix gives

and

(41)

where and are orthogonal matrices [16,
Ch. 2.5], i.e., and

, and

(42)

is a diagonal singular value matrix, with
and .

We then use the orthogonal matrices and to transform
the whitened composite vector into the canonical composite
vector

(43)

The covariance matrix for the canonical composite vector
becomes

(44)
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Fig. 13. Transformation from standard coordinates � and � to canonical coor-
dinates � and �.

The elements of are referred to as the canon-
ical coordinates of and the elements of are
the canonical coordinates of . The diagonal cross-correlation
matrix

(45)

is called the canonical correlation matrix of canonical corre-
lations , with . Thus, the
canonical correlations measure the correlations between pairs of
corresponding canonical coordinates. That is, ;

, , with being the Kronecker delta.
The canonical correlations are also the singular values of the
coherence matrix . Using the orthogonality of and , the
squared coherence matrix can be written as

(46)

where is the squared canonical correlation matrix of the
squared canonical correlations . That is, the squared canon-
ical correlations are the eigenvalues of the squared coherence
matrix .

Fig. 13 illustrates the transformation from standard coordi-
nates and to coherence coordinates and and then to
canonical coordinates and . It can be noted that the transfor-
mation from standard coordinates and to canonical coordi-
nates and can be represented by and
where and . In this case,

and are known as the canonical mapping matrices.
It can be shown [8] that the coherence measure between the

two channels and is given by

(47)

i.e., the coherence is represented in terms of the canonical corre-
lations , which measure the dependence between the corre-
sponding canonical coordinates. The channels and are per-
fectly coherent iff , and noncoherent iff . The th
term of the product on the right-hand side of (47), i.e., ,
gives the contribution of the th canonical correlation to the total
coherence measure .
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